

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Meeting Challenges in Heavy Oil Production – R&D for Improved Processing

Heavy Oil Working Group September 22nd, 2015 Bogotá, Colombia

Heavy oil has unique challenges...

- Heavy oils are viscous and contain metals,
 sulfur, nitrogen which results in challenges:
 - Transportation (processing, diluent)
 - Impact on refineries
 - Discounted value
- Canada upgrades less than half of its heavy oil from oil sands and the remainder is diluted with solvent and exported to refineries in other markets
- Use of diluent has risks:
 - Cost and reliability of solvent supply
 - Pipeline capacity expensive infrastructure; diluent takes a significant portion of that capacity
 - Environmental impacts of diluent production and use (GHGs, spills)

Husky Upgrader, Alberta, Canada

... and we are looking at partial upgrading to address these risks...

Benefits of partial upgrading:

- Reduce/eliminate solvent use for heavy oil pipeline transportation
- Reduce GHG emissions
- Increase competitiveness and market value

3

...with a comprehensive R&D program that includes several activities...

- Develop and demonstrate partial upgrading technologies in our pilot plants
- Modelling and analysis to understand and predict technology outcomes
- Evaluate whether partially upgraded products are compatible with other feedstocks to, and configurations of, refineries

... and has a strong research direction...

Strong modeling capacity helps to evaluate technologies prior to (expensive) piloting. Using:

- analytical expertise
- pilot and industry datā on upgrading processes
- thermodynamic and kinetic models

Rational process development
 GHG / Life cycle assessment

...including exploring key technologies...

MEG HI-Q[®]

- recover diluent from fieldtransported heavy oil; mild thermal cracking; recycle solvent
- next step, solvent deasphalting
- just past research stage

Solvent de-asphalting

- small-scale pilot under construction at federal research centre
- other collaborations between federal research centre and industry under discussion
- at small-pilot stage

From: www.megenergy.com

...with industry partners and experts.

- Super-critical water cracking (JGC Corporation of Japan)
 - no H₂ or catalysts needed; lower energy per barrel
 - suitable for remote sites
 - 5 bpd pilot plant at NRCan research centre
- Sonic cavitation (Jetshear™ Fractal Systems)
 - reduce diluent required to meet pipeline's viscosity spec for Canadian bitumen (~10° API), by up to 50%
 - focused on "lighter" heavy oils (~13° API),
 reduce diluent by ~35% (based on lab testing)
 - 1000 bpd pilot scale tests

From: www.jgc.com

From: www.fractalsys.com

Opportunities for Collaboration

- Technology development
 - proof of concept
 - pilot-scale trials
- Modelling to evaluate technologies
- Life-cycle assessment (GHGs)
- Advanced analytical methods for characterizing hydrocarbons
- Sharing expertise and samples

Thank You!

For further information please contact:

Dr. Kim Kasperski Senior Director, Research and Development Natural Resources Canada e-mail: kim.kasperski@Canada.ca

